Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

Σχετικά έγγραφα
GENIKEUMENA OLOKLHRWMATA

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

11 OktwbrÐou S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

JEMATA EXETASEWN Pragmatik Anˆlush I

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

APEIROSTIKOS LOGISMOS I

Ανάλυση ις. συστήματα

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

Mègisth ro - elˆqisth tom

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN

Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα


Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Θεωρία Πιθανοτήτων και Στατιστική

SofÐa ZafeirÐdou: GewmetrÐec

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

Στατιστική για Χημικούς Μηχανικούς

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

Κλασσική Ηλεκτροδυναμική II

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

στο Αριστοτέλειο υλικού.

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k

Ask seic me ton Metasqhmatismì Laplace

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...

Ανάλυση ασκήσεις. συστήματα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

Θεωρία Πιθανοτήτων και Στατιστική

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2


ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Στατιστική για Χημικούς Μηχανικούς

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

Ergasthriak 'Askhsh 2

HU215 - Frontist rio : Seirèc Fourier

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Eisagwg sthn KosmologÐa

Shmei seic Sunarthsiak c Anˆlushc

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA

Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec

στο Αριστοτέλειο υλικού.

Shmei seic sto mˆjhma Analutik GewmetrÐa

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn

N.Σ. Μαυρογιάννης 2010

Φυλλο 3, 9 Απριλιου Ροδόλφος Μπόρης

Eukleideiec Gewmetriec

2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka

ENA TAXIDI STH SUNOQH. g ab T a bc. R i jkl

JewrÐa UpologismoÔ. Grammatikèc QwrÐc Sumfrazìmena kai Autìmata StoÐbac

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( )

Ανάλυση. σήματα και συστήματα

Ergasthriak 'Askhsh 3

EISAGWGH STON PROGRAMMATISMO ( ) 'Askhsh 2

Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013

thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.

2

Ανάλυση ΙΙ Σεπτέµβριος 2012 (Λύσεις)

Shmei seic sto mˆjhma Analutik GewmetrÐa

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN


Tm ma Fusik c Mˆjhma: Pijanìthtec -Sfˆlmata-Statistik PerÐodoc: Febrouˆrioc 2008

Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier)

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c

Σχόλια για το Μάθημα. Λουκάς Βλάχος

t t j=1 span(x) = { 1-1

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

G. A. Cohen ** stìqo thn kubernhtik nomojesða kai politik, den upˆrqei tðpota to qarakthristikì sth morf thc.)

Apeirostikìc Logismìc. Pragmatikèc Sunart seic Miac Pragmatik c Metablht c

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V.

1 Σύντομη επανάληψη βασικών εννοιών

Å Ó Ó ÐÅÉÑÁÌÁÔÉÊÏ ËÕÊÅÉÏ. ÁóêÞóåéò. ôçò ÅÕÁÃÃÅËÉÊÇÓ Ó ÏËÇÓ ÓÌÕÑÍÇÓ Å ÅÔÏÓ É ÉÄÑÕÓÇÓ

Ta Jewr mata Alexander kai Markov thc JewrÐac Kìmbwn

ΜΑΘΗΜΑ 2, Έλεγχος ροής προγράμματος ΒΑΣΙΚΗ ΣΥΝΤΑΞΗ:

9.2 Μελετώντας τρισδιάστατα γραφικά στο επίπεδο Oi sunartήseiv Contour Plot kai DensityPlot

Review Exercises for Chapter 7

+#!, - ),,) " ) (!! + Henri Poincar e./ ', / $, 050.

Transcript:

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I. Aìristo Olokl rwma 2. Orismèno Olokl rwma 3. Diaforetik èkfrash tou aìristou oloklhr matoc H Sunˆrthsh F () = 4. Olokl rwma AntÐstrofhc Sunˆrthshc f(t) dt Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèandroc

. Aìristo Olokl rwma (indefinite integral) Orismìc: 'Estw f mia sunˆrthsh orismènh se èna diˆsthma. Arqik sunˆrthsh parˆgousa thc f sto onomˆzetai kˆje sunˆrthsh F pou eðnai paragwgðsimh sto kai isqôei: F () = f(), gia kˆje. H ènnoia thc arqik c sunˆrthshc eðnai mða ènnoia pou orðzetai se diˆsthma kai ìqi se ènwsh diasthmˆtwn. ApodeiknÔetai ìti kˆje suneq c sunˆrthsh se èna diˆsthma èqei arqik sunˆrthsh sto diˆsthma. H arqik sunˆrthsh miac sunˆrthshc f (an upˆrqei), den eðnai monadik. Orismìc: To sônolo ìlwn twn paragous n miac sunˆrthshc f s> èna diˆsthma onomˆzetai aìristo olokl rwma thc f sto. Dhlad h F () + c eðnai to aìristo olokl rwma thc f(). f() d = F() + c, c R. : to sômbolo thc olokl rwshc, f : h oloklhrwtèa sunˆrthsh, : h metablht olokl rwshc, d : diaforikì tou. To sômbolo d dhl nei ìti h metablht olokl rwshc eðnai. Genikˆ me df() sumbolðzoume to diaforikì mðac sunˆrthshc f kai eðnai df() = f ()d. c : h stajerˆ olokl rwshc. Ac shmei soume ed ìti: (a) f () d = f() + c, c R ( ) (a) Sumbatikˆ: f() d = f(). Sunèpeia tou orismoô tou aìristou oloklhr matoc kai twn kanìnwn parag gishc eðnai oi e c dôo idiìthtec : λ f() d = λ f() d, λ R, [f() ± g()] d = f() d ± g() d kai genikˆ [λ f() ± µ g()] d = λ f() d ± µ g() d, λ, µ R. H diadikasða eôreshc tou aìristou oloklhr matoc eðnai h antðstrofh thc diadikasðac thc parag gishc. Ta aìrista oloklhr mata merik n basik n sunart sewn dðnontai ston parakˆtw pðnaka: 2

PÐnakac Basik n Aìristwn Oloklhrwmˆtwn. 2. 3. 4. 5. 6. 7. 8. 9. 0.. 2. 3. 4. 5. 6. d = + + + c,, > 0 d = ln + c, 0 a d = ln a a + c, 0 < a e d = e + c sin d = cos + c cos d = sin + c (kπ cos 2 d = tan + c, π 2, kπ + π ), k Z 2 sin 2 d = cot + c, (kπ, (k + ) π), k Z { a2 d = arcsin ( ) a + c, 2 arccos ( ) a + c2, { a 2 + 2 d = a arctan ( ) a + c, a arccot ( ) a + c2, a > 0, ( a, a) a 0 ( a2 + d = ln + ) a 2 + 2 + c, a 0 2 2 a 2 d = ln + 2 a 2 + c, > a > 0 sinh d = cosh + c cosh d = sinh + c cosh 2 d = tanh + c sinh 2 d = coth + c, 0 3

Idiìthtec tou Aìristou Oloklhr matoc - Kanìnec Olokl rwshc. d() = d( + ), d() = d( ), d() = d(), d() = ( d. ) 2. Sta oloklhr mata dunˆmewn prèpei to diaforikì na eðnai ìmoio me bˆsh thc dônamhc. ( + 5) 3 d = ( + 5) 3 ( + 5)4 d( + 5) = + c. 4 3. Sta oloklhr mata trigwnometrik n sunart sewn prèpei to diaforikì na eðnai ìmoio me to tìo. συν( + ) d = συν( + ) d( + ) = ηµ( + ) + c. 4. Sta oloklhr mata dunˆmewn tou e prèpei to diaforikì na eðnai ìmoio me ton ekjèth. e 2 d = e 2 d(2) = 2 2 e2 + c. Oloklhr mata thc morf c f () f() d kai f() f () d f () f() d = ln f() + c. f() f () d = f() df() = f 2 () 2 + c. 4

2. Orismèno Olokl rwma (definite integral) Olokl rwsh katˆ Riemann To ìrio tou ajroðsmatoc S n upˆrqei sto R kai eðnai aneˆrthto apì thn eklog twn endiˆmeswn shmeðwn ξ k. To ìrio autì onomˆzetai orismèno olokl rwma thc suneqoôc sunˆrthshc f. Dhlad : β n f() d = lim S n = lim f(ξ k ) k. n k 0 k= Je rhma thc Mèshc Tim c tou OloklhrwtikoÔ LogismoÔ An h sunˆrthsh f() eðnai suneq c sto [, β], upˆrqei èna toulˆqiston shmeðo ξ ston (, β), tètoio ste β f() d = f(ξ)(β ). To Jemeli dec Je rhma tou OloklhrwtikoÔ LogismoÔ An h sunˆrthsh f() eðnai suneq c sto [, β] kai F () eðnai mia parˆgousa thc f() [F () = f()], tìte β f() d = [F()] β = F(β) F(). - To je rhma autì ja qrhsimopoieðtai gia ton upologismì twn orismènwn oloklhrwmˆtwn. - To [, β] kaleðtai diˆsthma olokl rwshc me kˆtw ìrio kai pˆnw ìrio β. - Oi arijmoð kai β onomˆzontai ìria olokl rwshc. - H sunˆrthsh f lègetai oloklhr simh sto diˆsthma [, β]. 'Opwc prokôptei apì ton orismì tou oloklhr matoc, kˆje sunˆrthsh f suneq c sto [, β] eðnai oloklhr simh sto [, β]. - To orismèno olokl rwma eartˆtai apì th sunˆrthsh f kai ta ˆkra kai β kai ìqi apì thn << onomasða >> thc metablht c olokl rwshc. To grˆmma eðnai mða metablht (h metablht olokl rwshc) pou mporeð na antikatastajeð apì opoiod pote ˆllo grˆmma. 'Etsi èqoume: To orismèno olokl rwma β f() d = β β f() d f(t) dt. eðnai pragmatikìc arijmìc opìte ( β f() d ) = 0, se antðjesh me to aìristo olokl rwma f() d pou eðnai èna sônolo sunart sewn. 5

Idiìthtec tou orismènou oloklhr matoc. β [f() ± g()] d = β f() d ± β g() d kai genikˆ β [λ f() ± µ g()] d = λ β f() d ± µ β g() d, λ, µ R. 2. β c f() d = c β f() d 3. β f() d = γ f()d + β f() d γ 4. β f() d = f() d β 5. f() d = 0 6. β f() d β f() d 7. f() 0, [, β] β f() d 0 8. f() g(), [, β] β f() d β g() d. 'Estw mia sunˆrthsh f suneq c sto [, β] kai Ω to qwrðo pou perikleðetai apì thn C f, ton ˆona kai tic eujeðec = kai = β. Tìte: An f() 0 sto [, β], ja eðnai E(Ω) = β f() d. An f() 0 sto [, β], ja eðnai E(Ω) = β f() d. An f den diathreð stajerì prìshmo sto [, β], tìte E(Ω) = β f() d. 'Estw oi suneqeðc sunart seic sto [, β] kai Ω to qwrðo pou perikleðetai apì tic grafikèc parastˆseic twn f kai g kai tic eujeðec = kai = β. Tìte: An f() g() sto [, β], ja eðnai E(Ω) = β [f() g()] d. An f() g() sto [, β], ja eðnai E(Ω) = β [g() f()] d. An h diaforˆ f() g() den diathreð stajerì prìshmo sto [, β], tìte E(Ω) = β f() g() d. Prìtash: An h ˆrtia sunˆrthsh f eðnai oloklhr simh sto [, ], tìte f() d = 2 0 f() d. Prìtash: An h peritt sunˆrthsh f eðnai oloklhr simh sto [, ], tìte f() d = 0. 6

3. Diaforetik èkfrash tou aìristou oloklhr matoc H Sunˆrthsh F() = f(t) dt An sto orismèno olokl rwma jewr soume to èna ˆkro eleôjero wc proc thn metablht, èqoume To olokl rwma mporeð na pˆrei th morf f() d. f() d = F () F (). An t ra jèsoume c = F (), tìte to parapˆnw olokl rwma gðnetai akrib c to aìristo olokl rwma: f() d = F () + c = f() d. Je rhma: An f eðnai mia suneq c sunˆrthsh se èna diˆsthma kai shmeðo tou diast matoc, tìte h sunˆrthsh F () = eðnai mia parˆgousa thc f sto. Dhlad isqôei: f(t) dt,, ìpou a eðnai stajerˆ kai mia metablht f(t) dt = f(),. Me ˆlla lìgia, o rujmìc aôhshc tou embadoô F () eðnai Ðswc me thn tim thc f sto. Parathr seic: Apì to parapˆnw je rhma prokôptei ìti: i. AnagkaÐa proüpìjesh gia thn Ôparh thc F eðnai h sunèqeia thc f se diˆsthma. H F orðzetai se diˆsthma kai ìqi se ènwsh diasthmˆtwn. ii. Apì ton orismì thc F kˆje tim thc eðnai orismèno olokl rwma. F ( 0 ) = 0 f(t) dt 7

iii. Gia ton orismì thc F mporoôme na epilèoume opoiad pote - kˆtw ˆkro oloklhr matoc arkeð na eðnai stajerì stoiqeðo tou. Diaforetik epilog tou mac dðnei diaforetik arqik sunˆrthsh F thc f. 'Omwc ìlec oi sunart seic afoô eðnai arqikèc thc f, diafèroun katˆ mia stajerˆ c opoða mporeð na upologisteð: 'Estw 2 kai, 2 kai oi sunart seic: Tìte isqôei: F () F 2 () = F () = f(t) dt, F 2 () = f(t) dt f(t) dt = f(t) dt + 2 2 f(t) dt. 2 f(t) dt = iv. H F eðnai paragwgðsimh kai suneq c sto, epðshc h F eðnai suneq c sto. v. vi. f(t) dt = f(t) dt = f(t) dt = f(). f(t) dt = f(t) dt + f(). 2 f(t) dt = c,. vii. An sth jèsh tou, upˆrqei ˆllh sunˆrthsh F () = g() f(t) dt, tìte h parag gish gðnetai wc e c: g() F () = f(t) dt = f [g()] g () ìpou g() sunˆrthsh paragwgðsimh. An h sunˆrthsh g() eðnai kˆtw ˆkro tou oloklhr matoc, prin paragwgðsoume th fèrnoume sto ˆnw ˆkro allˆzontac to prìshmì tou oloklhr matoc. viii. An h sunˆrthsh f eðnai orismènh se ènwsh ènwn diasthmˆtwn, ta kai, prèpei na an koun sto Ðdio diˆsthma. Sunep c, an mac zhthjeð to pedðo orismoô miac sunˆrthshc F () = g() f(t) dt, brðskoume to sônolo sto opoðo h f(t) eðnai suneq c kai apaitoôme h parˆstash g() na an kei se autì. An h f(t) orðzetai se ènwsh diasthmˆtwn, apaitoôme h g() na an kei sto Ðdio diˆsthma me autì sto opoðo an kei to. i. An h sunˆrthsh F () orðzetai san: F () = g() f(t) dt h() tìte h parˆgwgìc thc upologðzetai afoô spˆsoume to olokl rwma se ˆjroisma dôo ˆllwn me koinì ˆkro opoiod pote arijmì pou na an kei sto diˆsthma sto opoðo h f eðnai suneq c, dhlad g() F () = f(t) dt + f(t) dt dhlad isqôei ìti: h() F () = f [h()] h () + f [g()] g (). 8

Parˆdeigma. Na breðte to pedðo orismoô kai thn parˆgwgo thc sunˆrthshc F () = 0 t t 2 dt. LÔsh H sunˆrthsh f(t) = t eðnai suneq c sto sônolo t 2 D f = (, ) (, ) (, + ). Gia na orðzetai h F prèpei na arkeð ta ˆkra olokl rwshc 0, na an koun sto Ðdio diˆsthma tou pedðou orismoô thc f. Epeid to 0 (, ) prèpei to (, ). 'Ara D F = (, ). Gia kˆje (, ) èqoume F () = 0 t t 2 dt = 2. Parˆdeigma 2. Na breðte to pedðo orismoô kai thn parˆgwgo thc sunˆrthshc F () = 2 2 LÔsh e t t dt. H sunˆrthsh f(t) = et t eðnai suneq c sto sônolo D f = (, 0) (0, + ). To pedðo orismoô thc g() = 2 eðnai D g = R kai thc h() = eðnai 2 D h = (, 2) (2, + ). 'Ara, an kei sto pedðo orismoô thc F an kai mìno an (a) D g D h (, 2) (2, + ) kai (a) oi g() kai h() an koun sto pedðo orismoô thc f. Epomènwc: 2 2 < 0 2 < 0 2 2 > 0 2 > 0 'Ara, D F = (0, ) (2, + ). IsqÔei ìti: 2 0 < < < 2 2 < 0 > > 2 (0 < < > 2). F () = f [h()] h () + f [g()] g (), ìpou f(t) = et t, g() = 2, h() = 2. F () = 2 2 = e 2 2 = e 2 e t t dt ( = e 2 2 ( 2) 2 2 2 + e 2 (2 ). ( ) + e2 2 2 ( 2 ) = ) ( 2) + e2 2 (2 ) = 9

4. Olokl rwma AntÐstrofhc Sunˆrthshc Gia to olokl rwma λ κ f () d - jètoume f () = u = f(u), d = f (u) du. Ta nèa ìria olokl rwshc eðnai: - gia = κ f(u) = κ u = f (κ) = kai - gia = λ f(u) = λ u = f (λ) = β. Opìte λ f (λ) f () d = u f (u) du = κ f (κ) Sto diˆsthma [, β] h f prèpei na eðnai paragwgðsimh kai << - >>. β β u f (u) du = f () d. QwrÐo pou orðzetai apì thn grafik parˆstash thc antðstrofhc sunˆrthshc f, ton ˆona kai tic eujeðec = kai = β. An f () 0 tìte: E(Ω) = λ f () d κ λ β E(Ω) = f () d = f () d. κ 0